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Correlation function along the loop

Small deformations of the Wilson loops

Consider the Wilson loop operators in N = 4 SYM,

W =
1

N
TrPei

∫
(Aµẋ

µ+iyiΦi)ds (1)

If the path is an infinite straight line or a circle and if it couples to only one of the
scalars with the appropriate strength, say yi = |ẋ|δi6, the WL preserve 1/2 SUSY.
Now assume the original loop to be a circle in (1, 2)-plane, for a small deformation
of the path,

xµ = x
µ
0 (s) + ǫµ(s), x

µ
0 = (R cos s,R sin s, 0, 0), yi(s) = |ẋ0|δi6 + ǫi(s) (2)

The WL will deform accordingly,

W [xµ, yi] =

(

1 +

∫

ds

[

ǫµ
δ

δxµ(s)
+ ǫi

δ

δyi(s)
+O(ǫ2)

])

Wcircle (3)
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Correlation function along the loop

For our loop deformation, we have

W [xµ, yi] =
1

N
TrP

[

1 +

∫

ds (iǫµ(s)ẋν0(s)Fµν − ǫµ(s)|ẋ0|DµΦ6) (4)

−
∫

dsǫi(s)|ẋ0|Φi +O(ǫ2)

]

ei
∫
(Aµẋ

µ
0
+i|ẋ0|Φ6)ds

So the deformation of the WL is equivalent to the insertions of the local operators.
We define the p-point correlation functions along the loop

W [Op(xp) · · · O1(x1)] =
1

N
TrP

[

Op · · · O1e
i
∫
(Aµẋ

µ
0
+i|ẋ0|Φ6)ds

]

(5)

which form a gauge invariant observable.
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Integrability of SUSY Wilson loop in SYM

Basic setup

Below are some reviews of the work by Drukker and Kawamoto (2006).
The composite operator is composed of two complex fields

Z =
1√
2
(Φ1 + iΦ2), X =

1√
2
(Φ3 + iΦ4) (6)

and we choose the WL to be a straight line along the direction of t,

x0 = t, xi = 0, i = 1, 2, 3 (7)

then the 2-pt function of the composite operators along the loop is

W [O†(t)O(0)] =
1

N
TrP

[

O†(t)O(0)ei
∫
(At+iΦ6)dt

]

(8)

We will evaluate this quantity to 1-loop order.
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Integrability of SUSY Wilson loop in SYM

tree-level: the holonomy will not contribute

W = 〈 1
N

Tr
[

O†(t)O(0)
]

〉 (9)

t = 0 t

If K is the length of the inserted operator,then

〈W [O†(t)O(0)]〉 ∝
(

λ

8π2t2

)K

I (10)
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Integrability of SUSY Wilson loop in SYM

1-loop order:

bulk terms: these terms come from the interactions between nearest sites
within the inserted operators.

The Z-factors of these diagrams are

Zself-energy = I+
λ

8π2
log ΛI, (11)

ZH = I −
λ

16π2
log ΛI,

ZX = I+
λ

16π2
(I− 2P) log Λ

November 22, 2019 9 / 34



Integrability of SUSY Wilson loop in SYM

1-loop order:

boundary terms: The interaction between the outermost fields and the WL
provides the bdy terms for the open spin chain.

The Z-factor is

Zbdy = I− λ

8π2
log ΛI (12)
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Integrability of SUSY Wilson loop in SYM

Integrability in SU(2) sector

The total 1-loop renormalization factor is

Ztotal = I+
λ

8π2
log Λ

K−1
∑

l=1

(I− Pl,l+1) (13)

The ADM is

Γ =
d logZ

d log Λ
∼ λ

8π2

K−1
∑

l=1

(I− Pl,l+1) (14)

doubling trick: the model is equivalent to a regular closed Heisenberg chain
of length 2K with reflection symmetry.
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Integrability of SUSY Wilson loop in SYM

Doubling trick

Consider two copies of the spin chains with the same spin structure

H1 =
λ

8π2

K−1
∑

k=1

(I− Pk,k+1), H2 =
λ

8π2

2K
∑

k=K+1

(I− Pk,k+1) (15)

Because the spins at positions k and 2K + 1− k are the same, the following term
will vanish

H3 =
λ

8π2
(I − PK,K+1 + I − P2K,1) (16)

Sum up these three terms we get the regular closed Heisenberg spin chain of
length 2K with reflection symmetry.
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Integrability of SUSY Wilson loop in ABJM

Review of ABJM theory

N = 6 superconformal Chern-Simons matter theory (ABJM theory) was
proposed as a U(N)× U(N) gauge theory to describe a stack of M2 branes
at a Zk orbifold point. In the large N limit, its gravity dual is type IIA string
theory on AdS4 × CP 3.

ABJM theory has a Lagrangian description

I =
k

4π

∫

R2,1

(

CS(A)− CS(Â)
)

(17)

−Tr(DµY )†DµY − iTrψ†γµDµψ

−Vferm − Vbos

Vbos: six scalar interaction term

Vbos ∼ Y Y
†
Y Y

†
Y Y

† (18)

Vferm: quartic mixed potentials

Vferm ∼ Y Y
†
ψψ

† (19)
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Integrability of SUSY Wilson loop in ABJM

field content: transformation under the gauge group

Y ∈ (N, N̄), ψ ∈ (N, N̄), A ∈ (adj, 1) Â ∈ (1, adj) (20)

perturbation theory: Chern-Simons level k occurs as an overall factor, so the
coupling constant can be considered as

g2CS =
1

k
(21)

though k should be an integer to preserve the invariance under large scale
gauge transformation. Also in the large N limit, using the double-line
formalism, we see that each loop will provide an extra N factor, so the
effective coupling constant is

λ ≡ g2CSN =
N

k
(22)

The theory become integrable in ’t Hooft limit

k,N → ∞, λ = fixed (23)
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Integrability of SUSY Wilson loop in ABJM

bare propagators:

λ λ0 λ0

1-loop corrected propagtor:

gluon: λ2 order
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Integrability of SUSY Wilson loop in ABJM

scalar: λ order
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Integrability of SUSY Wilson loop in ABJM

fermion: λ order
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Integrability of SUSY Wilson loop in ABJM

vertices:

λ2 λ
λ

λ
−1

λ0
λ
0

λ0
λ
0
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Integrability of SUSY Wilson loop in ABJM

Integrability in ABJM

As in SYM, the integrable structure is encoded in the ADM of the composite
operators [Minahan&Zarembo, Bak&Rey].

We consider the following single trace operators

Ô = Tr
(

Y i1Y
†
j1
· · ·Y iLY

†
jL

)

(24)

which dual to the Hamiltonian of an alternating spin chain.

To extract the ADM, we compute the two-point correlation functions

〈ÔÔ†〉 (25)

by summing over all planar diagrams (N → ∞) in certain loop order λ
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Integrability of SUSY Wilson loop in ABJM

at 2-loop order (λ2), the contributions come from the following diagrams:

three-sites:

two-sites:
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one-site diagram:
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Integrability of SUSY Wilson loop in ABJM

The ADM at 2-loop order turns out to be

H2−loops = λ2
∑

l

[

I− Pl,l+2 +
1

2
Pl,l+2Kl,l+1 +

1

2
Pl,l+2Kl+1,l+2

]

(26)

where K is the trace operator, acting at two adjacent sites, defined in components
as

K
i1,j2
j1,i2

= δi1i2 δ
j2
j1

(27)

The integrability is established by two kinds of R-matrices,

R44(u) = u+ P, R44̄(u) = −(u+ 2) +K (28)
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Integrability of SUSY Wilson loop in ABJM

Supersymmetric Wilson loops in 3d CSM

bosonic type: 1/6 BPS

W =
1

N
TrR1×R2

exp

∫ (

iAµẋ
µ +

2π

k
|ẋ|MJ

I Y
IY

†
J

)

ds (29)

fermionic type: 1/2 BPS

W =
1

N
TrR exp

(

i

∫

Ldτ

)

(30)

with the superconnection given by

L =





iAµẋ
µ + 2π

k
|ẋ|MJ

I Y
IY

†
J ,

√

2π
k
|ẋ|ηI ψ̄I

√

2π
k
|ẋ|ψI η̄I , iÂµẋ

µ + 2π
k
|ẋ|M̂ I

JY
†
I Y

J



 (31)
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Integrability of SUSY Wilson loop in ABJM

WL with Insertions

For the 1/6 BPS WL, in order to get non-trivial boundary terms , we need at
least two fields from each insertion to interact with the fields from WL,

insertion τ

insertion τ
′

WL fields

Expand the WL to 1st order, we evaluate the expectation value below,

I = 〈Y (t1)Y
†(t1)Y (t3)Y

†(t3)

∫

dt2
2π

k
MJ

I Y
I(t2)Y

†
J (t2)〉 (32)
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Integrability of SUSY Wilson loop in ABJM

t1

t3

t2

To fully contracted all the fields, we pick the sextic interaction vertex and roughly
we get

I ∼ λ3
∫

dt2

∫

d3wG2(t1 − w)G2(t2 − w)G2(t3 − w) (33)

∼ λ3
∫

dt2G
2(t3 − t1)

∫

d3wG2(t1 − w)G2(t2 − w)

∼ λ3
∫

dt2G
2(t3 − t1)

∫

d3w

|w|4

there is a linear divergence when t1 ∼ t2 and t3 ∼ t2
this term is of order λ3
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Integrability of SUSY Wilson loop in ABJM

For 1/2 BPS WL, at 2-loop order (λ2), we give several diagrams which contribute
to the bdy

Expand WL to 1st order

1

2

WL
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Integrability of SUSY Wilson loop in ABJM

expand WL to 2nd order, we will get the following new vertices from WL,

L2 ∼
(

A2 + λAY Y † + λ2Y Y †Y Y † + λψ̄ψ, λ
1

2Aψ̄ + λ
3

2Y Y †ψ̄

∗ ∗

)

(34)

some graphs at λ2 order are

1

2

WL
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Integrability of SUSY Wilson loop in ABJM

also two diagrams having fermions from WL

1

2

WL

1

2

WL

So we find that, at 2-loop order, boundary terms from the interactions of the WL
and the insertions are of the type:

Hb = αI+ βK (35)
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Integrability of SUSY Wilson loop in ABJM

The complete Hamiltonian is

H = λ2
2L−2
∑

l=1

Hl,l+1,l+2 + β (K2L−1,2L +K1,2) (36)

This is an integrable Hamiltonian which can be seen most easily from CBA. For
this, we make the following identifications:

Y 1 = A1, Y 2 = A2, Y 3 = B
†
1, Y 4 = B

†
2 (37)

vacuum:

|Ω〉 = |A1B2 · · ·A1B2〉 (38)

elementary excitations: A type and B type

| · · · (A2B2) · · · 〉 (39)

| · · · (B†
1B2) · · · 〉

| · · · (A1A
†
2) · · · 〉

| · · · (A1B1) · · · 〉
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Integrability of SUSY Wilson loop in ABJM

Under the action of trace operator, the state becomes

KY aY
†
b = K

a;j
i;b Y

iY
†
j = δ

j
i δ

a
bY

iY
†
j = δab

(

∑

i

Y iY
†
i

)

(40)

so the Hamiltonian reduces to

H = λ2
2L−2
∑

l=1

(I− Pl,l+2) (41)

There is no mixing of different excitations, so the spin wave for a single excitation
X simply takes the form

ΨX(k) =

L
∑

x=1

(

eikx +RXe
−ikx

)

|x〉 (42)

Solving the eigenvalue equation, we find

RX = 1, X = A2, B
†
1, A

†
2, B1 (43)
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Integrability of SUSY Wilson loop in ABJM

So the reflection matrix is proportional to the identity, R = ηI. For an integrable
theory, the reflection matrix should satisfy the REs,

S(k1, k2)R2l(k2)S(−k2, k1)R1l(k1) = R1l(k1)S(−k1, k2)R2l(k2)S(−k2,−k1),

S(−k1,−k2)R1r(−k1)S(−k2, k1)R2r(−k2) = R2r(−k2)S(−k1, k2)R1r(−k1)S(k2, k1).

For our reflection matrix , the REs reduce to

S(k1, k2)S(−k2, k1) = S(−k1, k2)S(−k2,−k1) (44)

We can check that the bulk S-matrix do satisfy the above relations.
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Integrability of SUSY Wilson loop in ABJM

Conclusion

For N = 4 SYM, the integrability is shown in SU(2) sector. The integrability
is also found in larger SO(6) sector and in non-supersymmetric WL.

For ABJM theory, it is possible to obtain non-trivial boundary terms from

higher loop order or larger closed sector
more complicated constructions of SUSY WLs
non-supersymmetric WLs
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